Keeping Up With Change in AI and Computer Vision

Jeff Bier, President, Embedded Vision Alliance

Keeping Up With Change in AI and...

Opportunities and Challenges in Additive Manufacturing to Redesign Metal Parts for Light-weighting and Performance Enhancement

Subir Roy, PhD, Senior Technical Director,...

Opportunities and Challenges in...

Transforming the Infrastructure and Asset Life Cycle

Terry D Bennett, Senior Industry Strategist and...

Transforming the Infrastructure and...

The Match Game

Scott Page, Director, University of Michigan

The Match Game

Quantum Computing is Here to Stay

John Shea, VP, Chief Information Officer, Eaton Vance

Quantum Computing is Here to StayJohn Shea, VP, Chief Information Officer, Eaton Vance

Quantum computing is here to stay. Although not in its final state, it is clear that quantum computing will influence and change computing for years to come. In fact, notion of post-quantum computing is already a topic of conversation.

In 1994 Dr. Peter Shor, created an algorithm that, in theory, utilizes yet-to–be- developed quantum computing that would be capable of cracking RSA encryption much faster than a traditional computer. This means decryption that could take years on traditional computers, could in potentially be completed in minutes or even seconds.

A quick review of computing achievements helps us understand why quantum computing is closely studied and a critical piece of computing technology moving forward. The Transmission Control Protocol/Internet Protocol (TCP/IP) was developed in 1983 as a series of communication processes that allow network devices to connect with each other. Less than a decade later, the World Wide Web launched in 1991. The computing power, network capabilities and security considerations we use today trace their roots to these key milestones. Since then, cybercrime has become a real and growing business. A recent study from Bromium.com declared cybercrime generated $1.5 trillion USD in profits in 2017, which is the equivalent to the GDP of Russia in 2017. It only makes sense the internet needs to be architected and considering current encryption methods, could be rendered unsecure based on Shor’s algorithm. It is quite clear that quantum computing needs to be part of the solution to enhance cybersecurity.

I expect the progress of quantum computing and the reliance on artificial intelligence to grow together and usher in a new era, supported by the baseline data and foundational infrastructure we leverage today

There is no shortage of interest in developing and studying quantum computing. One way to gauge worldwide attention to quantum computing technology is through the vast number of academic papers published across the globe. It is difficult to discern the focus of nation’s ambitions from the volume of papers but it is very clear the nations most focused on quantum technology are China and the United states. The U.S. and China published 4,511 and 4,125 papers on quantum computing. These two countries account for more than half (56%) of all of the papers by the top six nations between 2004 and 2013. (Sources: Digital Science; Clarivate). Germany, Britain, Japan and Canada make up the remaining 44%.

Countries concentrating on quantum computing have varying objectives. China is focused on creating a quantum-key-distribution satellite communication network with some major Chinese telecommunications providers to connect two networks 3,000 kilometers apart. The goal appears to be a secure, robust, high bandwidth solution that would rival or surpass current fiber connections through satellites, which requires much less physical infrastructure. South Korea and the United Kingdom have embarked on major initiatives to link cites within their respective countries with quantum networks. The capital of Australia is setting up a closed government quantum network. China’s ambitions are lofty, South Korea and the U.K. are slightly more modest and Australia’s goal seems readily attainable.

The European Telecommunications Standards Institute (ETSI), is working to set up a global standard for quantum-cryptography, indicating that the European Union is also taking the emergence of quantum networks as viable and important.

The notion of quantum supremacy is a quantum computer that exceeds the power of the most powerful supercomputer in the world. This is not yet a reality and furthermore, is a moving target because the fastest computer in the world continues to getting faster with time, thereby creating a greater gap. However, most authorities believe we are approximately 10 years away

A key question to consider is how the quantum computer of the future will be deployed. Unlike the microcomputer that evolved into first, the personal computer and then the smartphone, quantum computing will be cloud based. We will tap into its processing power from our endpoint devices. Today, that means a Google glass-like device, such as a watch, phone or a PC. Notably, I believe the phone user interface will change as we enhance and deploy advances in personal technology. Simply put, people were not designed to walk around while holding a phone to their faces.

The critical question still remains: what will this technology do? Shor’s algorithm reverse engineers RSA encryption. This means a new encryption capability will likely result. Importantly, artificial intelligence is more suited towards quantum computing than traditional computing. There are already numerous every-day uses of artificial intelligence and its uses continues to grow. I expect the progress of quantum computing and the reliance on artificial intelligence to grow together and usher in a new era, supported by the baseline data and foundational infrastructure we leverage today.

John Shea was named by Wall Street & Technology Magazine in their 2007 Gold Book as one of the top financial technology executives. In 2013, John was awarded Boston Business Journal’s CIO of the Year Award, which recognizes the top innovators who keep their companies running ahead of the curve. John is on the board of directors for First Literacy, Rose Fitzgerald Kennedy Greenway Conservancy and Anna Maria College.

Read Also

ROLE OF INNOVATIVE TECHNOLOGY TAKING CENTER STAGE IN WORLD-CLASS MANUFACTURING COMPANIES

ROLE OF INNOVATIVE TECHNOLOGY TAKING CENTER STAGE IN WORLD-CLASS...

Susan Kampe, CIO, VP, Information Technology, Cooper Standard [NYSE: CPS]
4 MUST-HAVE TECHNOLOGIES FOR METALS & MINING

4 MUST-HAVE TECHNOLOGIES FOR METALS & MINING

Sharon Gietl, VP-IT & CIO, The Doe Run Company
Automating Smart Buildings in a Smarter Way

Automating Smart Buildings in a Smarter Way

Ajay Kamble, CIO, Turtle & Hughes, Inc.
Responsible AI: The Human- Machine Symbiosis

Responsible AI: The Human- Machine Symbiosis

Sal Cucchiara, CIO & Head Of Wealth Management Technology, Morgan Stanley
Will Today's Transformational CIOs Become Future CEOs?

Will Today's Transformational CIOs Become Future CEOs?

Neil Jarvis, CIO, Fujitsu America
Top